8 How to

Facts to Know

Many basic word problems can be expressed in an equation format, which makes it easy to understand and solve.

Using Algebraic Symbols

- You can use a letter of the alphabet to represent the unknown number in a problem.
- The equation is written so that the values on the left side of the equal sign equal the values on the right side of the equal sign.
- Solve the equation so that the unknown value represented by a letter is alone on one side of the equal sign and the value of the unknown is on the other side of the equal sign.

Sample A

Jennifer has $\$ 25.00$. She needs $\$ 49.00$ to buy a new school outfit. How much more money does she need?
Write an equation this way: n (money needed) +25 (money she has) $=49$ (cost of outfit)

Solve the equation by subtracting 25
from each side.

$$
\begin{aligned}
n+25 & =49 \\
n+25-25 & =49-25 \\
n & =24
\end{aligned}
$$

Axiom of Equality

- The axioms of equality were used to help solve the basic equation above.
- Any value added, subtracted, multiplied, or divided to one side of the equal sign must be added, subtracted, multiplied, or divided respectively to the other side.

Sample B

A group of 5 girls decided to split evenly the $\$ 18.75$ cost of a CD album by their favorite group. How much money did each girl spend?
Write an equation.

$$
\begin{aligned}
5 n & =\$ 18.75 & & \text { Each girl spent } \\
5 n \div 5 & =\$ 18.75 \div 5 & & \$ 3.75 . \\
n & =\$ 3.75 & &
\end{aligned}
$$

Working with Two Unknown Quantities

You can use the same letter with an added or subtracted amount to represent two unknown quantities. Simplify and combine terms whenever possible.

Sample C

Sammy's mother is 2 years more than 3 times as old as Sammy. Their combined age is 42 . How old are Sammy's mother and Sammy?
Equation: Let n equal Sammy's age. Let $3 n+2=$ Sammy's mother's age.
Since the total of their ages equals 42 , then $n+3 n+2=42$
Combine terms: $4 n+2=42$
Use the axioms of equality by years
subtracting 2 and then dividing by 4 .

$$
\begin{aligned}
4 n+2 & =42 & & \text { Sammy is } 10 \\
4 n+2-2 & =42-2 & & \text { old. His mother } \\
4 n & =40 & & \text { is } 32 \text { years old. } \\
4 n \div 4 & =40 \div 4 & & \\
33 & & &
\end{aligned}
$$

Alex has $\$ 13.00$ to buy a stereo that costs $\$ 24.00$. How much more money does he need? Write the equation. Let $n=$ the amount of money.

$$
n+13=24
$$

Use the axioms

$$
n+13=24
$$

of equality:

$$
\begin{aligned}
n+13-13 & =24-13 \\
n & =11
\end{aligned}
$$

Directions: Use the information on page 33 to help you solve these problems. Write an equation for each word problem using n and solve it.

1. Jimmy is 23 years younger than his mom who is 36 years old. How old is Jimmy?

Write the equation: \qquad
Solve for n : \qquad
Answer: \qquad
2. Albert has 15 CDs. Dianne has 2 more than 4 times as many CDs. How many CDs does Dianne have?

Write the equation: \qquad
Solve for n : \qquad
Answer: \qquad
3. Joe's dad weighs 216 pounds. Joe weighs 122 pounds less than his dad. How much does Joe weigh?

Write the equation: \qquad
Solve for n : \qquad
Answer: \qquad
4. Valerie took 25 shots in a basketball game. She had a 60% shooting percentage. How many shots did she make?

Write the equation: \qquad
Solve for n : \qquad
Answer: \qquad
5. Sherrie's CD played for 22 minutes, which was 7 minutes longer than Matthew's CD. How long did Matthew's CD play?
Write the equation: \qquad
Solve for n : \qquad
Answer: \qquad
6. Jerry read 1,145 words in five minutes. Jonathan read 316 words less in the same time period. How many words did Jonathan read?
Write the equation: \qquad
Solve for n : \qquad
Answer: \qquad
7. Jeremiah rode 88 minutes on his skateboard without falling or getting off. Nick rode only $\frac{3}{4}$ as long. How long did Nick ride? Write the equation: \qquad
Solve for n : \qquad
Answer:

Extension

Write a word problem comparing your age to another person's age.
Word Problem: \qquad

Solve for n : \qquad
Answer:

Ronny's father is 24 years older than Ronny. Their combined age is 46 . How old is Ronny? How old is Ronny's father?
Write the equation: Let x stand for Ronny's age. Let $x+24$ stand for his dad's age.
Equation:

$$
\begin{array}{rlr}
x+x+24 & =46 & \\
2 x+24 & =46 & \\
2 x+24-24 & =46-24 & \\
2 x & =22 & \\
2 x \div 2 & =22 \div 2 & \\
x & =11 &
\end{array}
$$

Directions: Use the information on page 33 to help you solve these word problems. Write an equation for each problem using n and then solve the problem.

1. Sarah's mother is 28 years older than Sarah is. Their combined age is 50 . How old is Sarah? How old is her mother?

Write the equation: \qquad
Solve for n : \qquad
Answer: \qquad
2. Joe's dad weighs 140 pounds more than Joe. Their combined weight is 336 pounds. How much does Joe weigh? How much does his dad weigh?

Write the equation: \qquad
Solve for n : \qquad
Answer: \qquad
3. Christina has $\$ 22.00$ more than 3 times as much money as Melissa has. Together they have $\$ 122.00$. How much money does each girl have?

Write the equation: \qquad
Solve for n : \qquad
Answer: \qquad

Directions: Use the information on page 33 to help you solve these word problems. Write an equation for each problem using n and then solve the problem.

1. Fred's dad is 25 years older than Fred. His mother is 23 years older than Fred. The combined age of the three people is 93 . How old is Fred? How old is each parent?
Write the equation: \qquad Solve for n : \qquad
Answer: \qquad
2. A bike costs $\$ 100.00$ more than a scooter. A scooter costs $\$ 60.00$ more than a skateboard. The total cost of the 3 items is $\$ 310.00$. How much is the skateboard? How much is the scooter? How much is the bike?

Write the equation: \qquad Solve for n : \qquad
Answer: \qquad
3. Jimmy's brother is 9 times as old as Jimmy. In 6 years, his brother will be only 3 times as old as Jimmy. How old is each boy?
Write the equation: \qquad Solve for n : \qquad
Answer: \qquad
4. Maybelle is 5 years younger than Jesse. Ellen is 2 years older than Jesse. Jeanne is 8 years older than Jesse. The combined age of the four children is 53.
How old is Jesse? \qquad How old is Maybelle? \qquad
How old is Ellen? \qquad How old is Jeanne? \qquad
Write the equation: \qquad Solve for n : \qquad
Answer: \qquad
5. Elsa had $\$ 15.00$ more than Joseph. Julian had $\$ 10.00$ less than Joseph. Martha had $\$ 23.00$ more than Joseph. Together they had $\$ 108.00$. How much money did each student have?
Write the equation: \qquad Solve for n : \qquad
Answer: \qquad
6. Christina had 2 times as much money as Melissa. Charmain had 4 times as much money as Melissa. Together they had $\$ 105.00$. How much money did each girl have?

Write the equation: \qquad Solve for n : \qquad
Answer: \qquad
7. Matthew had 3 times as much money as Kristin. Joshua had $\$ 10.00$ less than Matthew did. Altogether they had $\$ 74.00$. How much money did each person have?
Write the equation: \qquad Solve for n : \qquad
Answer: \qquad
8. Kenneth is 8 years older than Andrew. Billy is 3 times as old as Andrew. Cameron is 5 years younger than Andrew. The combined age of the four is 63. How old is each boy?

Write the equation: \qquad Solve for n : \qquad
Answer: \qquad

9 Proportions, and Rates

Facts to Know

Ratios

- A ratio is used to compare two numbers or the size of two amounts.
- A ratio can be used to compare part of something to the entire amount as you do in a fraction.
- A ratio can compare one part of a whole to another part of a whole.
- A ratio can compare all of one thing to all of something else.

Sample A

Kathy has 7 orange tennis balls and 5 yellow tennis balls.
The ratio of orange tennis balls to all tennis balls is $\frac{7}{12}$
The ratio of yellow tennis balls to all tennis balls is $\frac{5}{12}$
The ratio of orange tennis balls to yellow tennis balls is $\frac{7}{5}$
The ratio of yellow tennis balls to orange tennis balls is $\frac{5}{7}$

Writing Ratios

- A ratio can be written as a fraction: $\frac{2}{3}$
- A ratio can be written with "to": 2 to 3 .
- A ratio can be expressed with a colon: 2:3.

Proportions

- A proportion is used to compare two ratios.
- A proportion is an equation which shows that two ratios are equal.
- A proportion can be written in fraction form. $\frac{1}{2}=\frac{5}{10}$

Using Proportions

- The product of the means equals the product of the extremes.
- If you know any three of the terms, you can find the fourth.
- You can also solve a proportion by using cross products.

Rates

A rate is a special ratio whose denominator is always 1.
Examples include miles per gallon (mpg) and miles per hour (mph).

Sample B

If you travel 40 miles in one hour, how far do you travel in 3 hours? $\underset{\text { (hours) }}{\text { (miles) }} \frac{40}{1}=\frac{d}{3}$
$d=120$
You travel 120 miles in 3 hours.

- A proportion can be written in colon form. $1: 2:: 5: 10$ (1 is to 2 as 5 is to 10)
- The outer terms (1 and 10) are called the extremes.
- The inner terms (2 and 5) are called the means.
C. $\begin{aligned} & \$ 698.00 \text { or } \\ & \$ 700.00\end{aligned}$

2. A. $185 \mathrm{sq} . \mathrm{ft}$.
B. 5 rolls
C. $\$ 125$
3. A. $2443 / 8$ sq. ft. 230 sq. ft.;
244 3/8 sq. ft.; 230 sq. ft.; 425 sq. ft.
B. $1,3733 / 4 \mathrm{sq}$. ft. or $1,374 \mathrm{sq}$. ft.
C. 4 gallons
D. $\$ 71.96$

Page 23

1. A. 2,356 sq. ft.
B. $\$ 23.56$
2. A. 200 ft .
B. $\$ 6.00$
3. A. 1,116 sq. ft .
B. $\$ 11.16$
4. A. 34.54 ft .
B. $\$ 1.04$
C. $94.99 \mathrm{sq} . \mathrm{ft}$.
D. $\$ 0.95$
5. A. 643.75 sq . ft.
B. $\$ 96.56$
6. A. 221 sq. ft.
B. $\$ 39.78$
7. A. 37.68 ft .
B. $113.04 \mathrm{sq} . \mathrm{ft}$.

Extension: Answers will vary.

Page 24

1. 240 cartons
2. $4,070 \mathrm{cu} . \mathrm{ft}$.
3. $25,688.34 \mathrm{cu} . \mathrm{in}$.
4. $1,417.95 \mathrm{cu} . \mathrm{cm}$
5. $370 \mathrm{cu} . \mathrm{ft}$.
6. $14,820 \mathrm{cu} . \mathrm{ft}$.
7. $162,887.5 \mathrm{cu} . \mathrm{ft}$.
8. $10,160,922 \mathrm{lb}$.
9. 1,218,398.5 gallons
10. 471 cu . in.
11. $84,780 \mathrm{cu} . \mathrm{ft}$.

Page 26

1. $\$ 45.60$
2. $\$ 34.13$
3. $\$ 104.65$
4. $\$ 43.51$
5. $\$ 32.95$
6. $\$ 29.25$
7. $\$ 36.86$
8. $\$ 30,555.64$
9. Monday and Tuesday = Saturday
10. $\$ 17,111.16$
11. $\$ 12,473.53$

Page 27

1. $\$ 101.47$
2. $\$ 12.27$
3. You could buy the DVD player; \$179.67
$\$ 5.96$ change
4. $\$ 786.15$
5. The traditional machine/phone is $\$ 11.24$ cheaper.
6. $\$ 19.20$
7. $\$ 49.76$
8. Boom Box City $\$ 25.46$ less
9. $\$ 16.30$
10. 25%

Page 28

1. 22.86 miles per day
2. 4 hr .24 min .
3. 3 hr .20 min .
4. $40 \mathrm{~m} . \mathrm{p} . \mathrm{h}$.
5. 1 mile per minute
6. $\$ 21.00$
7. $\$ 3.20$
8. $\$ 0.82$
9. $\$ 46.74$

Page 30

1. 6 tops /4 sorts
2. 3 pennies, 3 nickels, 0 dimes, 3 quarters,
3. A. 1 penny, 0 nickels, 4 dimes, 4 quarters, 0 half dollars
B. 1 penny, 4 nickels, 2 dimes,

0 quarters,
2 half dollars
4. $6,9,12,15,18$
5. $300,350,400,450$, 500
6. 3 footballs, 6 tennis
balls, 3 baseballs, 2 basketballs
7. Jack is 26 years
old; Dad is 52 years old
8. Marie is 22 years old; Mother is 44 years old

Page 31

1. $\$ 360.00$
2. 2,700 beads
3. 240 total

16 skirts
32 jeans
64 shorts
128 blouses
4. $\$ 372.00$ total

Elaine $\$ 12.00$
Christina $\$ 24.00$
Alyse $\$ 48.00$
Doreen \$96.00
Melissa \$192.00
5. James 2 years old

Raymond 3 years
old
Brett 4 1/2 years
old
John 6 years old
Robert 11 years old

Page 32

1. 3 hr .2 min .
2. 31 games
3. 81 times
4. 30 names
5. 20 points on 8 th game; 35 points on 14th game
6. 35 players are 13 years old

Page 34

1. $\begin{aligned} n & =36-23 \\ n & =13\end{aligned}$

13 years old
2. $n=(4 \times 15)+2$
$n=62$
62 CDs
3. $n=216-122$
$n=94$
94 lb .
4. $n=25 \times .60$
$n=15$
15 shots
5. $n=22-7$
$n=15$
15 minutes
6. $n=1,145-316$
$n=829$
829 words
7. $n=88 \times 3 / 4$
$n=66$
66 minutes
Extension: Answers will vary.
Page 35

1. $n+(n+28)=50$

$$
2 n+28=50
$$

$$
n=11
$$

Mother is 39 years
old.
Sarah is 11 years
old.
2. $n+(n+140)=336$

$$
2 n+140=336
$$

$$
n=98
$$

Joe weighs 98 lbs.
Dad weighs 238
lbs.
3. $n+4 n+22=122$

$$
n=25
$$

Melissa has \$25.00.
Christina has \$97.00.
4. $n+2 n=669$

$$
\begin{gathered}
3 n=669 \\
n=223
\end{gathered}
$$

John read 223
words.
Joseph read 446
words.
5. $n+4 n=15$

$$
5 n=15
$$

$$
n=3
$$

Nicholas is 3 years old.
Norman is 12 years old.
6. $n+9 n+2 n=144$

$$
\begin{aligned}
12 n & =144 \\
n & =12
\end{aligned}
$$

Daniel has 12
stamps.
Bryan has 24
stamps.
George has 108
stamps.

Page 36

1. $n+(n+25)+$
$(n+23)=93$
$3 n+48=93$

$$
n=15
$$

Fred is 15 years old.
Mom is 38 years
old.
Dad is 40 years old.
2. $3 n+220=310$ $n=30$
The skateboard is \$30.
The scooter is $\$ 90$.
The bike is $\$ 190$.
3. $9 n+6=3(n+6)$

$$
n=2
$$

Jimmy is 2 years old.
Brother is 18 years old.
4. $n+(n-5)+$
$(n+2)+(n+8)$
$=53$
$4 n+5=53$
$n=12$
Jesse is 12 years old.
Maybelle is 7 years
old.
Ellen is 14 years old.
Jeanne is 20 years old.
5. $n+(n+15)+$
$(n-10)+(n+23)$
$=108$
$4 n+28=108$ $n=20$
Joseph had \$20.00.
Elsa had \$35.00.

Julian had \$10.00.
Martha had \$43.00.
6. $n+2 n+4 n=105$

$$
\begin{aligned}
7 n & =105 \\
n & =15
\end{aligned}
$$

Melissa had \$15.00.
Christina had \$30.00.
Charmain had
$\$ 60.00$.
7. $n+3 n+(3 n-10)$
$=74$
$7 n-10=74$ $n=12$
Kristin had \$12.00. Matthew had $\$ 36.00$.
Joshua had \$26.00.
8. $n+(n+8)+3 n+$
$(n-5)=63$
$6 n+3=63$
$n=10$
Andrew is 10 years
old.
Kenneth is 18 years old.
Billy is 30 years old.
Cameron is 5 years
old.
Page 38

1. $4 / 7$ or $4: 7$

4/11 or 4:11
$7 / 4$ or 7:4
7/11 or 7:11
2. $5 / 8$ or $5: 8$
$5 / 13$ or $5: 13$
8/5 or 8:5
$8 / 13$ or $8: 13$
3. $6 / 7$ or $6: 7$

6/13 or 6:13
7/6 or 7:6
7/13 or 7:13
4. $60 / 1$ or $60: 1$
5. $55 / 1$ or $55: 1$
6. $16 / 1$ or $16: 1$
7. $1,200 / 1$ or $1,200: 1$
8. $24 / 1$ or $24: 1$
9. $60 / 1$ or $60: 1$
10. $365 / 1$ or $365: 1$
11. $8 / 100$ or $8: 100$

Page 39

1. $2: 3:: n: 18$
$n=12$ blocks
2. $5: 3:: n: 60$ $n=100$ pages
3. $5: 7:: n: 630$ $n=450$ minutes
4. $14: 3:: n: 90$
$n=420$ gallons
5. $170: 4$:: $n: 240$
$n=10,200$ gallons
6. $20: 3:: 1000: n$
$n=150$ hours
7. $145: 3:: n: 24$
$n=1,160 \mathrm{lb}$.

Page 40

1. $55: 1:: n: 7$
$n=385$ miles
2. $18: 1$:: $n: 20$
$n=360$ miles
3. $60: 1:: n: 5.5$
$n=330$ minutes
4. $24: 1:: n: 13.5$
$n=324$ hours
5. $2,000,000: 1$:: n:48
$n=96,000,000$ tons
6. 2,980:n :: 40:1
$n=74.5 \mathrm{hr}$.
7. $100: 9:: n: 40.5$
$n=450$ miles
8. $16: 1:: n: 45$
$n=720 \mathrm{oz}$.
Challenge: $86,400 \mathrm{sec}$.;
$8,760 \mathrm{hr}$.

Page 41

1. 600 calories
2. 650 calories
3. 400 calories
4. 2,500 calories
5. handball and
bicycling
6. 1,650 calories
7. bicycling and walking
8. 3-hr. walk
9. Answers will vary.
10. 8 states
11. 7 states
12. 12 states
13. 1 to 5 million
14. Answers will vary.
15. California has the most.
Wyoming has the
least.
16. Answers will vary.

Page 42

1. Friday
2. Thursday
3. 15° to 20°
4. Monday
5. Wednesday and

Friday
6. Tuesday and Saturday
7. Monday, Saturday, and Sunday
8. 91.7° or 92°
9. 71.7° or 72°
10. Answers will vary.
11. water
12. nitrogen
13. 32%
14. other category
15. 47%
16. Answers will vary.

Page 43

1. $+2-12=-10$

You owe $\$ 10.00$.
2. $32-40=-8$ 8 below 0
3. $-4+-11+-6=-21$ 21 below par
4. $-\$ 1000+\$ 750=$ \$250
\$250 owed
5. $-600+200+100+$ $150=-150$
He needed 150 points to get to 0 .
6. $-69+35=-34^{\circ} \mathrm{F}$
7. $-129-(+) 136=$ -265
265° difference
8. $-80-(+) 134=-214$
214° difference

3 Practice
Directions: Write the algebraic expression. If there is one variable, use . If there are two variables, use and .

1. fourteen divided by a number \qquad
2. seven times a number \qquad
3. 10 less than a number \qquad
4. 12 more than a number \qquad
5. one number added to another number \qquad
6. a number divided by 6 \qquad
7. 4 times a number plus 5 times the same number \qquad
8. 4 times a number plus 5 times another number \qquad
9. 7 more than one-third of a number \qquad
10. 25 divided by a number \qquad
11. the sum of 6 and a number divided by 10 \qquad
12. one-half the product of 8 and a number \qquad
13. the sum of 5 and a number divided by 7 \qquad
14. the sum of 4 and a number divided by 10 \qquad
15. 20 decreased by 4 times a number \qquad
16. the sum of 20 and a number divided by 5 \qquad
17. The length of the gym floor is 5 feet longer than its width. Using for the width, write an expression for the length of the room.
18. Three carnival tickets cost cents. What is the cost of one? \qquad
Directions: Change the algebraic expressions to statements in words.

Algebraic Expression

Statement in Words
19. +
20. - \qquad
21. 4 \qquad
22. 8 \qquad
23. $2-5$ \qquad
24. $8+$
25.
26. 22 -
\qquad
\qquad
27. -22
\qquad
\qquad
mwneMothMovesU.com

Directions: Combine the like terms to simplify each expression.
28. $3+$
33. $12^{2}-3+$
29. +
34. $4-3+1$
30. $5-2$
35. $2+3-7$
31. $3-4$
36. $9+2^{3}-4-6$
32. $\frac{2}{3}+3+$
37. $\frac{8}{2}-9-6+12 y$

Directions: Evaluate the following expressions.
Let $=3$ and $=9$.
38. = \qquad
39. $=$ \qquad
40. $\overline{3}+\frac{\mathrm{t}}{3}=$ \qquad
41. $+=$ \qquad
42. = \qquad

Directions: Evaluate the following expressions.
Let $=5,=-4$, and $=10$.
43. = \qquad
44. $+=$ \qquad
45. = \qquad
46. $-5=$ \qquad
47. = \qquad

Revereveril imuM MothMovesu.com

Directions: Evaluate the following expressions.

Let $=6,=5,=2$

1. $3+6=$ \qquad
2. $2-3+10=$ \qquad
3. $9-4=$ \qquad
4. $14(+)=$ \qquad
5. $4-2-3=$ \qquad
6. $7(+)=$ \qquad
7. $3-(+)=$ \qquad

$$
\text { Let }=-3, \quad=4, \text { and }=-2 \text {. }
$$

6. $-=$ \qquad
7. __= \qquad

$$
\text { 9. } 1(+)=
$$

10. $3+2=$ \qquad

Directions: Solve the equations using the formulas given. \qquad
11. The temperature outside is $59^{\circ} \mathrm{F}$. What is it in Celsius? \qquad
(Use this formula: $\mathrm{C}=\frac{5}{9}(\mathrm{~F}-32)$)
12. Your family plans to go on a short weekend vacation. Your mom wants to drive only 3 hours on back roads at 45 miles per hour. How far away can you go? (Use the formula: $=$ or $=\quad \mathrm{x} \quad$.) \qquad
13. Fred Tye sells electronic equipment after school at Sparky's World. He earns $\$ 140$ a week, plus 7% percent commission on all sales over $\$ 1,000$. Last week, Fred sold $\$ 3,000$ worth of equipment. How much did he earn? (Use this formula: earnings $=$ salary +.07 (sales $-\$ 1000$).
14. Mr. Marky is pacing off the perimeter (the distance around) his square property. One side is 90 feet. "Don't walk the other three sides," said his wife. "Just use the formula, $\mathrm{P}=4 \mathrm{~s}$." "What does that mean?" said Mr. Marky. "It means," said his wife, "perimeter equals 4 times the length of any one side." What's the perimeter of Mr. Marky's property?

Directions: Solve each equation using an inverse operation.
15. $3=-36$
16. $+20=100$
17. $24=-18$
18. $\frac{}{3}=48$
19. $-15=20$
20. $-72=9$
21. $-25=$
22. $60=42+$

Directions: Solve these two- and three-step equations.

1. $8-4=60$
2. $9-12=69$
3. $\overline{3}+4=16$
4. $\overline{12}+8=30$
5. $\frac{3}{4}-3=9$
6. $39=14-3$

Directions: Combine the variables to solve the equations.
7. $7(2+)=28$
8. $8+2+2=32$
9. $3-2-10=-9$
10. $6(-3)=18$
11. $2(3+)=7$
12. $14-10-4=0$
13. $+2+3=12$
14. $+3+2(+3)=15$

Directions: Solve these equations with variables on both sides.
15. $4=8+2$
16. $5(-4)=3(+8)$
17. $3-9=7+5$
18. $7+15=4+37$
19. $3+10=8$
20. $2(-3)=4(-10)$
21. $5+32=8+17$
22. $6-2-9=4$
23. $48-4=8-12$
24. $28-2=5$
25. $9+17=6+32$
26. $19-14-21=-2$

Page 8

1. -2
2. 100
3. 54
4. 3
5. 924
6. -4
7. 60
8. -9
9. -24
10. 9
11. -70
12. -110
13. -36
14. -43
15. 24
16. 2.7
17. -90
18. 23
19. -4
20. -5
21. 7.89
22. -3
23. -6
24. 4
25. 11
26. -13
27. 15
28. -6
29. 12
30. 50
31. 12
32. 4
33. 7
34. -7
35. 4.4
36. -4.4
37. 18
38. 12
39. 17
40. -9
41. 16
42. -10
43. 7
44. 24
45. 5
46. -19
47. 15

Page 12

1. 63
2. 68.2
3. 46.2
4. 3
5. 9
6. 3
7. 1
8. 3
9. 7
10. -2
11. 3
12. -27
13. 54
14. 28
15. -65
16. -13
17. 35
18. $2 / 9$
19. -5
20. 4
21. -5

Pages 15 and 16

1. $14 /$
2. 7
3. -10
4. +12
5. + or +
6. $/ 6$
7. $4+5$
8. $4+5$
9. $/ 3+7$ or $1 / 3+$ 7
10. 25/
11. $\frac{6+}{10}$
12. $1 / 2(8)$ or $8 / 2$
13. $\frac{5+}{7}$
14. $\frac{4+}{10}$
15. $20-4$
16. $\frac{20+\mathrm{x}}{5}$
17. +5 or $5+$
18. $/ 3$ or $1 / 3$
19. one number added to another number
20. one number decreased by another number
21. 4 times a number
22. 8 divided by a number
23. 2 times a number, decreased by 5
24. 8 increased by a number
25. a number times another number
26. 22 decreased by a number
27. 22 less than a number
28. 4
29. 2
30. 3
31. -
32. $12 / 3+3$
33. $12^{2}-3+$
34. +1
35. $3-5$ or $-5+3$
36. $3+2^{3}-4$
37. $-2+3$
38. $\frac{3}{9}=\frac{1}{3}$
39. $3(9)=27$
40. $3 / 3+9 / 3=$ $12 / 3=4$
41. $3+9=12$
42. $\frac{9}{3}=3$
43. $5(-4)=-20$
44. $-4+10=6$
45. $\frac{10}{5}=2$
46. $10-5=5$
47. $\frac{-4}{10}=\frac{-2}{5}$

Page 20

1. 48
2. 55
3. 46
4. 112
5. -5
6. 2
7. $-11 / 3$ or $-4 / 3$
8. 29
9. 14
10. 5
11. $15^{\circ} \mathrm{C}$
12. 135 miles
13. $\$ 280$
14. 360 feet
15. $=-12$
16. $=80$
17. $=42$
18. $=144$
19. $=35$
20. $=-8$
21. $=-125$
22. $=18$

Page 24

12. $=20$
13. $=8$
14. $=9$
15. $=36$
16. $=264$
17. $=16$
18. $=3$
19. $=2$
20. $=3$
21. $=1$
22. $=6$
23. $=1 / 2$
24. $=1$
25. $=2$
26. $=3 / 2$
27. $=4$
28. $=22$
29. $=31 / 2$ or $7 / 2$
30. $=71 / 3$ or $22 / 3$
31. $=-2$
32. $=17$
33. $=5$
34. $=2$
35. $=5$
36. $=4$
37. $=5$
38. $=-6$

Page 27

1. $=3$
2. $=39$
3. $=2$
4. $=-11 / 2$ or $-3 / 2$
5. $=-1$
6. $=-16$
7. $=23 / 5$ or $13 / 5$
8. $=-13$
9. $=-5$
10. $=7$
11. $=12$

Page 28

1. $=$ - -
2. $=+$
3. = \qquad
4. $=+$
5. =
6. =
7. $=$
8. $=-$
9. $=$
10. = \qquad
11. $=$
12. = _
13. $=$
14. $=$ -
15. $=$
16. = -
17. = \qquad
18. equals the square root of $2-{ }^{2}$ or
$=\sqrt{2}^{2}-{ }^{2}$
19. $=\frac{}{2 \pi}$
20. $=\frac{-2}{2}$

Page 32

1. $(-5,0)$
2. $(-2,0)$
3. $(0,3)$
4. $(0,7)$
\qquad
mom
5. $(1,0)$
6. $(4,0)$
7. $(0,-3)$
8. $(0,-5)$
9. $(5,5)$
10. $(1,-5)$
11. $(-5,-1)$
12. $(-6,6)$
13. $(-1,5)$
14. $(-5,2)$
15. $(-6,-3)$
16. $(-3,-6)$

Page 35

1.

2.

3.

Page 38
1.

(0, -5)
2.

all solutions in common
3.

no solution
4.

$(-2,-1)$

Writing Systems of Equations 1

Directions: Assign two variables for each problem, and write the equations. Do not solve.

1. A store receives a shipment of VCRs and CD players. A shipment of 5 VCRs and $4 C D$ players costs $\$ 1,950$. A shipment of 3 VCRs and 6 CD players costs $\$ 2,250$. Find the cost of a VCR and the cost of a CD player.

Set up:

Equations:

Let \qquad
\qquad
\qquad
\qquad
\qquad
\qquad
2. A basketball team stopped at a fast-food restaurant after a game. They divided into two groups. One group bought 5 chicken sandwiches and 7 hamburgers for a cost of $\$ 24.90$. The second group spent $\$ 28.80$ and bought 5 chicken sandwiches and 9 hamburgers. How much does a hamburger cost?

Set up:

Let \qquad $=$ \qquad
\qquad $=$ \qquad
3. A travel agent offers 2 package vacation plans. The first plan costs $\$ 400$ and includes 3 days at a hotel and a rental car for 2 days. The second plan costs $\$ 550$ and includes 4 days at a hotel and a rental car for 3 days. The daily charge for the room and the car is the same under each plan. Find the cost per day for the room and for the car.

Set up:

Equations:

Let \qquad $=$ \qquad
\qquad $=$ \qquad

Writing Systems of Equations 1 (coont)

4. The Math Club is having their end-of-the-year party. Natasha found that the cafeteria usually makes 200 cups of pineapple-ginger ale fruit punch. The cook told her that if she doubles the pineapple and triples the ginger ale, she will have a total of 420 cups of punch. How many cups of each are needed to make 420 cups of fruit punch?

Set up:
Equations:
Let \qquad = \qquad
\qquad = \qquad
5. A cruise ship has 680 rooms. Those with a view rent for $\$ 160$ per night, and those without a view rent for $\$ 105$ per night. On a night when the ship was completely occupied, revenues were $\$ 92,500$. How many rooms of each type are on the ship?

Set up:
Equations:
Let \qquad = \qquad
\qquad $=$ \qquad
6. A pair of boots and a pair of tennis shoes cost $\$ 196.12$. The difference in their cost is $\$ 44.38$. Determine the cost of each type of footwear.

Set up:
Equations:
Let \qquad = \qquad
\qquad
\qquad
\qquad

Writing Systems of Equations 1 (oon)

7. Two different types of batteries are needed to run Joshua's remote-controlled jeep. The two batteries produce a total voltage of 6.5 V . The difference in their voltage is 2.5 V . Determine the voltages of the two batteries.

Set up:

Let \qquad $=$ \qquad
\qquad $=$ \qquad
8. In the Alice High School band, the number of trumpet players is 4 times the number of French horn players. There are 35 trumpet and French horn players in the band. How many people play the trumpet?

Set up:
Equations:

Let \qquad
\qquad
\qquad
\qquad
9. Jason, a vendor at the Minute Maid Park in Houston, sells two sizes of drinks. One costs $\$ 1.00$ and the other costs $\$ 1.50$. He knows he sold a total of 230 drinks for a total of $\$ 285.00$. How many small drinks did he sell?

Set up:
Equations:

Let \qquad $=$ \qquad
\qquad
\qquad

Guided Practice Book/Assessment Answers

Writing Systems of Equations 1
GPB (pages 180-182)

1. Let $x=\$ \mathrm{VCR}$
$y=\$ C D$ player
$5 x+4 y=1,950$
$3 x+6 y=2,250$
2. Let $x=\$$ hamburger
$y=\$$ chicken burger
$7 x+5 y=24.90$
$9 x+5 y=28.80$
3. Let $x=\$$ room
$y=\$ \mathrm{car}$
$3 x+2 y=400$
$4 x+3 y=550$
4. Let $x=\#$ cups pineapple
$y=\#$ cups ginger ale
$x+y=200$
$2 x+3 y=420$
5. Let $x=\#$ rooms $w /$ view
$y=\#$ rooms w/o view
$x+y=680$
$160 x+105 y=92,500$
6. Let $x=\$$ boots
$y=\$$ tennis shoes
$x+y=196.12$
$x-y=44.38$
7. Let $x=$ voltage battery 1
$y=$ voltage battery 2
$x+y=6.5$
$x-y=2.5$
8. Let $x=\#$ trumpet players
$y=\#$ Fr. horn players
$x=4 y$
$x+y=35$
9. Let $x=\#$ large
$y=\#$ small
$x+y=230$
$1.5 x+y=285$
Writing Systems of Equations 2
GPB (pages 183-185)
10. Let $x=\$$ fish
$y=\$$ frog
$3 x+y=12$
$2 y=12$
11. Let $x=\$$ acoustic guitar
$y=\$$ electric guitar
$y=x+781$
$12 x+13 y=72,628$
12. Let $x=\#$ guys
$y=\#$ girls
$x=y+9$
$x+y=21$
13. Let $x=\#$ slushies
$y=\#$ conies
$.75 x+y=12.75$
$x+y=15$
14. Let $x=\$$ DVD
$y=\$$ VHS
$x=2 y$
$x+2 y=23.85$
15. Let $x=\$$ last week
$y=\$$ this week
$y=x+60$
$x+y=340$
16. Let $x=\#$ baseball players
$y=\#$ basketball players
$x+y=100$
$y=x+20$
17. Let $x=\#$ small
$y=\#$ large
$3 x+6 y=1,803$
$x+y=302$
large boxes: 299
18. Let $x=\$$ small pack
$y=\$$ large pack
$x+y=1.10$
$2 x+y=1.45$
large pack: $\$.75$
19. Let $x=\#$ T-shirts
$y=\#$ key chains
$x+y=261$
$x=2 y$
key chains: 87
T-shirts: 174

Inequalities and Systems Unit Review GPB (pages 186-187)

1. C
2. D
3. A
4. B
5. D
6. C
7. B
8. A
9. C
10. D
11. C
12. B
13. A
14. A
15. C
16. D
17. C
18. D

Solving One-Variable Inequalities
Quiz-Form A (page 46)

1. Check graph.
2. Check graph.
3. Check graph.
4. Check graph.
5. $x<-\frac{5}{2}$
6. $\mathrm{k}<-\frac{9}{10}$
7. $x \geq-\frac{5}{12}$
8. $m \geq-\frac{17}{3}$
9. $m>-\frac{2}{3}$
10. $n \geq \frac{1}{5}$
11. $v<\frac{100}{3}$
12. $m>-11$
13. $e \geq \frac{20}{3}$

Practice 31

Equations can often be written to make problem solving easier.

- What number less 25 is 30 ?

$$
n-25=30 \quad n=55
$$

- What number is 6 times 70 ?

$$
n=6 \times 70 \quad n=420
$$

- What number divided by 4 equals 9 ? $n / 4=9$

$$
n=36
$$

Directions: Write an equation for each word problem. Then solve the equation. The first one is done for you.

1. What number is 12 less than 35 ?

Equation: $n=35-12$
Solution: $n=23$
2. What number added to 23 equals 41 ?

Equation: \qquad
Solution: \qquad
3. What number less 29 is 61 ?

Equation: \qquad
Solution: \qquad
4. What number added to 36 equals 53 ?

Equation: \qquad
Solution: \qquad
5. What number added to 19 equals 43 ?

Equation: \qquad
Solution: \qquad
6. What number divided by 4 equals 12 ?

Equation: \qquad
Solution: \qquad
7. What number times 12 equals 96 ?

Equation: \qquad
Solution: \qquad
8. What number divided by 8 equals 11 ?

Equation: \qquad
Solution: \qquad
9. What number times 19 equals 190 ?

Equation: \qquad
Solution: \qquad
10. What number divided into 42 equals 6 ?

Equation: \qquad
Solution: \qquad
3. no
4. 5 m.p.h.
5. 20 m.p.h.
6. the scale doesn't go 0 to 70
7. start at $0 /$ use a different scale
8. 1995
9. 1998
10. 10 thousand dollars
11. the scale is distorted, starts at 40
12. 25 thousand dollars
13. scale starts at 40 thousand dollars
14. starts at 0 and go to 70

Page 27

1. 920 feet 48,000 feet ${ }^{2}$
2. 288 feet 4,700 feet 2
3. 360 feet 8,100 feet 2
4. 600 feet 20,000 feet ${ }^{2}$
5. 320 yd . $6,000 \mathrm{yd} .{ }^{2}$
6. 260 feet 4,225 feet 2
7. 346 m $7,300 \mathrm{~m}^{2}$
8. 350 yd .
$7,150 \mathrm{yd} .{ }^{2}$

Page 28

1. 240 feet 2
2. 450 feet 2.
3. 1,035 feet 2
4. 240 feet 2
5. 4,171 feet 2
6. 1,155 feet 2
7. 672 feet 2
8. 87.5 feet 2
9. 99.6 feet 2
10. 484 feet 2

Page 29

1. $\mathrm{C}=\pi \mathrm{d}$

C $=3.14 \times 9$
28.26 centimeters
2. $\mathrm{C}=\pi \mathrm{d}$

C $=3.14 \times 23$
72.22 centimeters
3. $\mathrm{C}=2 \pi \mathrm{r}$

C $=2 \times 3.14 \times 2$
12.56 centimeters
4. $\mathrm{C}=\pi \mathrm{d}$
$\mathrm{C}=3.14 \times 2$
6.28 centimeters
5. $\mathrm{C}=\pi \mathrm{d}$

C $=3.14 \times 2.6$
8.164 centimeters
6. $\mathrm{C}=2 \pi \mathrm{r}$
$\mathrm{C}=2 \times 3.14 \times 12$
75.36 inches
7. $\mathrm{C}=2 \pi \mathrm{r}$
$\mathrm{C}=2 \times 3.14 \times 2$
12.56 inches
8. $\mathrm{C}=2 \pi \mathrm{r}$

C $=2 \times 3.14 \times 3$
18.84 centimeters

Page 30

1. $\mathrm{A}=\pi \mathrm{r}^{2}$
$\mathrm{A}=3 \times 3 \times 3.14$
$28.26 \mathrm{~cm}^{2}$
2. $\mathrm{A}=\pi \mathrm{r}^{2}$
$\mathrm{A}=3.14 \times 8 \times 8$
200.96 inches 2
3. $\mathrm{A}=\pi \mathrm{r}^{2}$
$\mathrm{A}=3.14 \times 6 \times 6$
$113.04 \mathrm{~cm}^{2}$
4. $\mathrm{A}=\pi \mathrm{r}^{2}$
$\mathrm{A}=3.14 \times 7 \times 7$
153.86
millimeters ${ }^{2}$
5. $\mathrm{A}=\pi \mathrm{r}^{2}$

A $=3.14 \times 9 \times 9$
254.34
millimeters ${ }^{2}$
6. $\mathrm{A}=\pi \mathrm{r}^{2}$
$\mathrm{A}=3.14 \times 2 \times 2$
12.56 feet 2
7. $\mathrm{A}=\pi \mathrm{r}^{2}$
$\mathrm{A}=3.14 \times 4 \times 4$
50.24 feet 2
8. $\mathrm{A}=\pi \mathrm{r}^{2}$
$\mathrm{A}=3.14 \times 4.5 \mathrm{x}$
4.5
$63.585 \mathrm{~cm}^{2}$
9. $\mathrm{A}=\pi \mathrm{r}^{2}$
$\mathrm{A}=3.14 \times 3.5 \mathrm{x}$
3.5
$38.465 \mathrm{~cm}^{2}$
10. $\mathrm{A}=\pi \mathrm{r}^{2}$
$A=3.14 \times 1.15 \mathrm{x}$
1.15
$4.15265 \mathrm{~cm}^{2}$

Page 31

1. 216 inches 3
2. $27 \mathrm{~cm}^{3}$
3. 729 inches 3
4. 8 inches 3
5. 125 inches 3
6. 900 cubic puzzles
7. 192 cubic magnifying glasses
8. $1,000 \mathrm{~cm}^{3}$ blocks
9. 120 games
10. 1,728 cubic puzzles

Page 33

1. library
2. town hall
3. gas station
4. $(-11,1)$
5. $(4,-4)$
6. $(-5,-9)$
7. park
8. $(-10,-7)$
9. $(-9,5)$
10. general store
11. drug store
12. III
13. I
14. II

Page 34

1. $3 / 10$
2. $3 / 40$
3. $4 / 15$
4. $2 / 3$
5. $9 / 50$
6. $8 / 45$
7. $11 / 16$
8. $2 / 5$
9. $1 / 2$
10. 1/27

Page 35

1. $n=35-12$
$n=23$
2. $23+n=41$ $n=18$
3. $n-29=61$
$n=90$
4. $36+n=53$

$$
n=17
$$

5. $19+n=43$
$n=24$
6. $n / 4=12$

$$
n=48
$$

7. $n \times 12=96$
$n=8$
8. $n / 8=11$
$n=88$
9. $n \times 19=190$

$$
n=10
$$

10. $42 / n=6$

$$
n=7
$$

Page 36

1. $5: 4$ or $5 / 4$
2. $4: 5$ or $4 / 5$
3. $2: 5$ or $2 / 5$
4. $5: 2$ or $5 / 2$
5. $3: 5$ or $3 / 5$
6. $5: 3$ or $5 / 3$
7. $4: 3$ or $4 / 3$
8. 3:4 or $3 / 4$
9. $2: 3$ or $2 / 3$
56)
10. $3: 2$ or $3 / 2$
11. $7: 5$ or $7 / 5$
12. $5: 7$ or $5 / 7$
13. $3: 7$ or $3 / 7$
14. $7: 3$ or $7 / 3$
15. $12: 2$ or $12 / 2$ or $6: 1$ or $6 / 1$
16. $2: 12$ or $2 / 12$ or $1: 6$ or $1 / 6$
17. $3: 7$ or $3 / 7$
18. $7: 3$ or $7 / 3$

Page 37

1. $1: 4:: 20: n$ $n=80$ feet
2. $1: 2:: 25: n$ $n=50$ feet
3. 3:15 :: 9:n $n=45 \mathrm{~m}$
4. $4: 1:: 100: n$ $n=25$ stories
5. 3:10 :: 33:n $n=110 \mathrm{yd}$.
6. $3: 10:: 15: n$ $n=50 \mathrm{~m}$
7. $5: 3:: n: 30$ $n=50$ inches
8. 7:2 :: 42:n or 2:7 :: $n: 42$ $n=12$ inches

Page 38

1. 528 9 59 (58.67)
2. 911 11 83 (82.8)
3. 1,160 13 89 (89.2)
4. 138 10 14 (13.8)
5. 63

12
5 (5.25)
6. 175

13
13 (13.46)
7. 109

16 7 (6.8)

Page 39

1. $(46,47,48,49,50$, $52,52,52,53,54$,

52
52
2. $(47,49,55,56,57$, 58, 59, 59, 59, 60, 60, 61, 63)
59
59
3. $(57,59,59,60,61$,
$61,63,63,65,66)$
59, 61, 63
61
4. $(47,49,49,49,51$,
$52,53,54,55,57$,
59)

49
52
5. $(39,40,44,44,45$,
$48,50,55,57,57$,
58, 60, 60, 61)
44, 57, 60
52.5

Page 40

1. C	6. C
2. D	7. B
3. B	$8 . \mathrm{D}$
4. A	$9 . \mathrm{B}$
5. A	$10 . \mathrm{D}$

Page 41

1. B	6. A
2. D	7. C
3. C	$8 . \mathrm{A}$
4. A	$9 . \mathrm{B}$
5. D	$10 . \mathrm{C}$

Page 42

1. A	6. B
2. B	7. D
3. C	$8 . \mathrm{C}$
4. B	$9 . \mathrm{A}$
5. D	$10 . \mathrm{D}$

Page 43

1. C	6. B
2. C	7. A
3. B	8. D
4. D	9. B
5. D	$10 . \mathrm{C}$

Page 44

1. C	6. A
2. C	7. C
3. A	8. B
4. B	9. D
5. D	10. C

Page 45

1. C	6. C
2. A	7. A
3. B	$8 . \mathrm{B}$

$=\mathbb{M}$ minocero
$\times \sim$ Raytheon

Name \qquad

Solving Equations 2

Directions: Solve. Show all work.

1. $3 x-4=7 x+2$
2. $6 p+2=-3 p+1$
3. $4 m-7=8 m+2$
4. $5 x+1=7 x-3$
5. $2 m-3=6 m-4$
6. $8 a+3=6 a+2$
7. $3 x+2 x-1=7 x-5-5$
8. $3 a-5 a-2=6 a+a-7$
9. $2 x-3=7 x+3-4 x$
10. $4 x+5=10 x-6$

Solving Equations 2 (oort)

11. $5 f+2-4=2 f-4 f-8$
12. $7 a+9-a=3 a+4$
13. $10 x+6=7 x+5+1$
14. $-x-2=4 x+6$
15. $3 z+12=6 z+10$
16. $8 x+1=2 x+3$
17. $-9 u-17=-5 u-7$
18. $11 n-(-6)=13 n-3$

Name

Algebra Applications with Angles

Directions: Solve for the variable and find the measure of each angle.

2.

3.

4.

5.

Algebra Applications with Angles (oom)

10.

11.

12.

$\angle a b c=100^{\circ}$

Transparency/Guided Practice Book Answers

Writing Expressions and
Equations 10 (cont.)
3. Let $x=\#$ laps Jin
$2 x=\#$ laps Marc
$3 x=9$
Marc: 6 laps
4. Let $x=\$$ shirt
$2 x-3=\$$ skirt
$3 x-3=33$
Skirt: \$21
Algebra Applications with Angles 2 (trans17.pdf)

1. Let $x=$ supplement angle
$2 x+3=$ other angle
$3 x+3=180$
$x=59$
$59^{\circ}, 121^{\circ}$
2. Let $x=$ complement angle
$x+56=$ other angle
$2 x+56=90$
$x=17$
$17^{\circ}, 73^{\circ}$
3. Let $x=$ base angle
$2 x+45=180$
$x=67.5$
67.5°
4. $x=17$

Cups and Chips 1
GPB (page 66)

1. $x=-\frac{2}{3}$
2. $x=-\frac{5}{6}$
3. $x=\frac{1}{2}$
4. $x=-1 \frac{1}{2}$ or $-\frac{3}{2}$
5. $x=2$
6. $x=1 \frac{2}{3}$ or $\frac{5}{3}$

Cups and Chips 2

GPB (page 67)

1. $x=-2$
2. $x=1 \frac{1}{5}$ or $\frac{6}{5}$
3. $x=-1 \frac{1}{2}$ or $-\frac{3}{2}$
4. $x=1$
5. $x=2 \frac{1}{3}$ or $\frac{7}{3}$
6. $x=-1 \frac{3}{4}$ or $-\frac{7}{4}$

Cups and Chips 3
GPB (page 68)

1. $x=7$
2. $x=-2$
3. $x=-1 \frac{1}{4}$ or $-\frac{5}{4}$
4. $x=\frac{3}{4}$
5. $x=3 \frac{1}{2}$ or $\frac{7}{2}$
6. $x=\frac{1}{4}$

Solving Equations 1
GPB (page 69)

1. $x=2$
2. $x=-2 \frac{1}{2}$ or $-\frac{5}{2}$
3. $x=-2 \frac{1}{2}$ or $-\frac{5}{2}$
4. $m=2 \frac{2}{5}$ or $\frac{12}{5}$
5. $p=-2$
6. $\mathrm{k}=-1 \frac{1}{6}$ or $-\frac{7}{6}$
7. $x=1 \frac{1}{5}$ or $\frac{6}{5}$
8. $p=-1$
9. $\mathrm{m}=\frac{2}{3}$
10. $k=3 \frac{1}{2}$ or $\frac{7}{2}$
11. $x=2$
12. $x=3 \frac{1}{2}$ or $\frac{7}{2}$

Solving Equations 2
GPB (pages 70-71)

1. $x=-1 \frac{1}{2}$ or $-\frac{3}{2}$
2. $\mathrm{p}=-\frac{1}{9}$
3. $m=-2 \frac{1}{4}$ or $-\frac{9}{4}$
4. $x=2$
5. $m=\frac{1}{4}$
6. $a=-\frac{1}{2}$
7. $x=4 \frac{1}{2}$ or $\frac{9}{2}$
8. $a=\frac{5}{9}$
9. $x=-6$
10. $x=1 \frac{5}{6}$ or $\frac{11}{6}$
11. $f=-\frac{6}{7}$
12. $x=2$
13. $a=-1 \frac{2}{3}$ or $-\frac{5}{3}$
14. $x=0$
15. $x=-1 \frac{3}{5}$ or $-\frac{8}{5}$
16. $\mathrm{z}=\frac{2}{3}$
17. $y=-6 \frac{3}{4}$ or $-\frac{27}{4}$
18. $x=\frac{1}{3}$
19. $\mathrm{u}=-2 \frac{1}{2}$ or $-\frac{5}{2}$
20. $n=4 \frac{1}{2}$ or $\frac{9}{2}$

Adding and Subtracting Fractions 2
GPB (page 72)

1. $-\frac{13}{3}$
2. $\frac{17}{2}$
3. $-\frac{33}{5}$
4. $\frac{13}{3}$
5. $-\frac{39}{4}$
6. $\frac{37}{20}$
7. $\frac{19}{12}$
8. $-\frac{93}{8}$
9. $\frac{46}{15}$
10. $-\frac{32}{3}$
11. $-\frac{11}{2}$
12. $-\frac{29}{5}$

Multiplying and Dividing Fractions 2 GPB (page 73)

1. -7
2. -4
3. $\frac{108}{5}$
4. $-\frac{15}{8}$
5. $\frac{11}{6}$
6. $-\frac{133}{4}$
7. $\frac{20}{9}$
8. 11
9. $-\frac{18}{7}$
10. $-\frac{17}{4}$
11. $\frac{32}{9}$
12. 25

Guided Practice Book/Assessment Answers (oom)

Algebra Applications with Angles GPB (pages 74-75)	17. $-\frac{93}{8}$
1. $c=20$	18. 32
$23^{\circ}, 67^{\circ}$	9
2. $x=20$	
20 $0^{\circ}, 70^{\circ}$	Solving Equations 1 QuizForm A (page 44)
3. $a=13$	1. $x=4$
$57^{\circ}, 33^{\circ}$	2. $x=-5$
4. $x=18$	3. $x=-1$
$62^{\circ}, 118^{\circ}$	4. $m=4$
5. $x=31$	5. $p=-\frac{8}{5}$
$128^{\circ}, 52^{\circ}$	5. $\mathrm{p}=-\frac{8}{5}$
6. $a=26$	6. $k=-\frac{7}{12}$
$60^{\circ}, 120^{\circ}$	6. $k=-\frac{7}{12}$
7. $d=20$	7. $x=2$
$65^{\circ}, 25^{\circ}$	8. $\mathrm{p}=-\frac{6}{5}$
8. $e=93$	5
$96^{\circ}, 84^{\circ}$	9. $m=\frac{6}{11}$
9. $x=8$	11
$56^{\circ}, 4^{\circ}$	10. $k=-\frac{7}{3}$
10. $x=40$	3
$120^{\circ}, 120^{\circ}$	Solving Equations 1 QuizForm B (asess22b.pdf)
11. $f=8$	
$31^{\circ}, 31^{\circ}$	1. $x=-2$
12. $x=30$	2. $a=5$
$75^{\circ}, 25^{\circ}$	3. $m=-\frac{10}{3}$
Mixed Fractions GPB (pages 76-77)	4. $m=4$
	5. $\mathrm{p}=-\frac{11}{3}$
1. $-\frac{15}{}$	3
2	6. $\mathrm{k}=-\frac{11}{7}$
2. $-\frac{13}{3}$	7
3	7. $x=3$
3. -4	7. $x=\frac{3}{2}$
4. 17	8. $\mathrm{p}=-\frac{1}{4}$
2	- 4
5. $-\frac{108}{5}$	9. $\mathrm{m}=-\frac{3}{4}$
5	4
6. -33	10. $n=-3$
5	
7. $-\frac{15}{8}$	Solving Equations 2 QuizForm A (pages 45-46)
8	
8. 13	1. $x=-6$
3	2. $k=20$
9. $-\frac{11}{6}$	3. $x=74$
6	4. $x=7$
10. $\frac{13}{4}$	5. $p=3$
4	$\text { 5. } p=\frac{5}{13}$
11. $-\frac{133}{4}$	6. $a=-4$
4	7. $x=-14$
12. 173	7. $x=-14$
12. $-\frac{173}{20}$	8. $\mathrm{k}=-\frac{1}{10}$
13. -20	10
13. $-\frac{20}{9}$	9. $x=\frac{2}{17}$
	17
14. $\frac{19}{19}$	10. $x=5$
12	
15. -11	
16. $-\frac{17}{4}$	

Algebra Applications with Angles
GPB (pages 74-75)
$23^{\circ}, 67^{\circ}$
0°
. $a=13$

$62^{\circ}, 118^{\circ}$
128°
. $a=26$
(
e=
$x=8$
, 4
$120^{\circ}, 120^{\circ}$
11. $f=8$

31,31
75°

Mixed Fractions
GPB (pages 76-77)

1. $-\frac{15}{2}$
2. $-\frac{13}{3}$
3. -4
4. $\frac{17}{2}$
5. $-\frac{108}{5}$
6. $-\frac{33}{5}$
7. $-\frac{15}{8}$
8. $-\frac{13}{3}$
9. $-\frac{11}{6}$
10. $\frac{13}{4}$
11. $-\frac{133}{4}$
12. $-\frac{173}{20}$
13. $-\frac{20}{9}$
14. $\frac{19}{12}$
15. -11
16. $-\frac{17}{4}$
17. $-\frac{93}{8}$
18. $\frac{32}{9}$

Form A (page 44)

1. $x=4$
2. $x=-5$
3. $x=-1$
4. $m=4$
5. $\mathrm{p}=-\frac{8}{5}$
6. $\mathrm{k}=-\frac{7}{12}$
7. $x=2$
8. $\mathrm{p}=-\frac{6}{5}$
9. $\mathrm{m}=\frac{6}{11}$
10. $k=-\frac{7}{3}$

Solving Equations 1 Quiz-
(asess22b.pdf)
2. $a=5$
2. $a=5$
4. $m=4$
5. $p=-\frac{11}{3}$
6. $k=-\frac{11}{7}$
7. $x=\frac{3}{2}$
8. $\mathrm{p}=-\frac{1}{4}$
9. $m=-\frac{3}{4}$
10. $n=-3$

Form A (pages 45-46)

1. $x=-6$
2. $k=20$
3. $x=74$
4. $x=7$
5. $p=\frac{3}{13}$
6. $a=-4$
7. $x=-14$
8. $k=-\frac{1}{10}$
9. $x=\frac{2}{17}$
10. $x=5$

Solving Equations 2 Quiz-
Form B (asess23b.pdf)

1. $x=-7$
2. $k=\frac{9}{2}$
3. $x=12$
4. $x=\frac{11}{2}$
5. $p=\frac{6}{7}$
6. $x=\frac{5}{3}$
7. $x=-4$
8. $k=\frac{3}{8}$
9. $x=1$
10. $x=\frac{32}{3}$

Linear Equations Unit Test-
Form A (pages 47-50)

1. $x=2$
2. $x=-9$
3. $x=\frac{4}{5}$
4. $x=0$
5. $m=-\frac{1}{15}$
6. $\mathrm{p}=-\frac{4}{3}$
7. $x=\frac{3}{2}$
8. $x=\frac{29}{20}$
9. $x=-7$
10. $p=-4$
11. Let $x=\#$ games last $y r$.
$2 x+4=\#$ games this $y r$.
$2 x+4=24$
12. Let $x=$ width
$x+6=$ length
$4 x+12=92$
13. Let $x=$ length of longer piece $x-48=$ length of shorter piece
$2 x-48=120$
14. Let $x=\#$ pts. Josh
$2 x+3=\#$ pts. Joel
$3 x+3=33$
15. Let $x=$ son's age
$3 x-2=$ Jared's age
$4 x-2=54$
16. Let $x=$ regular price
$\frac{1}{2} x+20=$ sale price
$\frac{1}{2} x+20=220$
17. Let $x=$ second number $4 x=$ first number
$x+10=$ third number
$6 x+10=250$

Name \qquad

Solving Equations 1

Directions: Solve. Show all work.

1. $2 x+3=6 x-5$
2. $8 x+4=6 x-1$
3. $4 x-2=6 x+3$
4. $8 m-4=3 m+8$
5. $4 p-3=8 p+5$
6. $8 k+4=2 k-3$
7. $3 x-5 x+4=6 x-2-3 x$
8. $2 p+3-5=6 p-8-10 p$
9. $8-4 m-6 m=3 m-4 m+2$
10. $3 k+1-6 k=4 k+8-9 k$
11. $6 x-5=3 x+1$
12. $4 x-7=2 x$

Writing Systems of Equations 2 (oont)

Directions: Assign two variables for each problem, and write the equations. Solve.
9. Together, 1 small package of gum and 1 large package of gum cost $\$ 1.10$. If you bought 2 small packages of gum and 1 large package of gum, they would cost $\$ 1.45$. How much did the large package of gum cost?

Set up:

Let \qquad $=$ \qquad
\qquad $=$ \qquad
SOLVE:
10. The Key Club is selling T-shirts and key chains. Its members sold a total of 261 items. Twice as many T-shirts were sold as key chains. How many items of each type were sold?

Set up:
Equations:
Let \qquad
\qquad
\qquad
\qquad
SOLVE:

Name

Solving for y Part 1

Directions: Solve for y.

1. $2 x+3 y=4$
2. $3 x=4 y+2$
3. $4 y=8 x-2$
4. $3 y-4 x=6$
5. $3 x-2 y=5$
6. $2 x-3=5 y$
7. $6 y=2 x-3$
8. $4 x-3 y=10$
9. $3 x-y=4$
10. $6 x-3 y=8$
11. $4 y=8 x+3$
12. $7 x=5 y+2$

Transparency/Guided Practice Book Answers

Writing Expressions and
Equations 10 (cont.)
3. Let $x=$ \# laps Mutt
$2 x=\#$ laps Jeff
$3 x=9$
Mutt: 6 laps
4. Let $x=\$$ shirt
$2 x-3=\$$ skirt
$3 x-3=33$
Skirt: \$21
Algebra Applications with Angles 2
a. Let $x=$ supplement angle
$2 x+3=$ other angle
$3 x+3=180$
$x=59$
$59^{\circ}, 121^{\circ}$
b. Let $x=$ complement angle
$x+56=$ other angle
$2 x+56=90$
$x=17$
$17^{\circ}, 73^{\circ}$
c. Let $x=$ base angle
$2 x+45=180$
$x=67.5$
67.5°
d. $x=17$

Writing Expressions and Equations 11 (trans14.pdf)

1. Let $x=w t$. of cone
$3 x=w t$. of ice cream
$4 x=8$
ice cream: 6 grams
2. Let $x=$ the number
$2(x-8)=-2$
number: 7
3. Let $x=$ length
$\frac{1}{5} x+18=$ width
$\frac{1}{5} x+18=20$
length: 10 meters
4. Let $x=$ length of side 1
$4 x-5=$ length of side 3
$2 x+3=$ length of side 2
$7 x-2=68$
Sides: $10 \mathrm{~m}, 35 \mathrm{~m}, 23 \mathrm{~m}$
Cups and Chips 1
(GPB page 24)
5. $x=-\frac{2}{3}$
6. $x=-\frac{5}{6}$
7. $x=\frac{1}{2}$
8. $x=-1 \frac{1}{2}$
9. $x=2$
10. $x=1 \frac{2}{3}$

Cups and Chips 2
(GPB page 25)

1. $x=-2$
2. $x=1 \frac{1}{5}$
3. $x=-1 \frac{1}{2}$
4. $x=1$
5. $x=2 \frac{1}{3}$
6. $x=-1 \frac{3}{4}$

Cups and Chips 3
(GPB page 26)

1. $x=7$
2. $x=-2$
3. $x=-1 \frac{1}{4}$
4. $x=\frac{3}{4}$
5. $x=3 \frac{1}{2}$
6. $x=\frac{1}{4}$

Solving Equations 1
(GPB page 27)

1. $x=2$
2. $x=-\frac{5}{2}$
3. $x=-\frac{5}{2}$
4. $m=\frac{12}{5}$
5. $\mathrm{p}=-2$
6. $k=-\frac{7}{6}$
7. $x=\frac{6}{5}$
8. $p=-1$
9. $\mathrm{m}=\frac{2}{3}$
10. $k=\frac{7}{2}$
11. $x=2$
12. $x=\frac{7}{2}$

Solving Equations 2
(GPB pages 28-29)

1. $x=-\frac{3}{2}$
2. $\mathrm{p}=-\frac{1}{9}$
3. $m=-\frac{9}{4}$
4. $x=2$
5. $m=\frac{1}{4}$
6. $a=-\frac{1}{2}$
7. $x=\frac{9}{2}$
8. $a=\frac{5}{9}$
9. $x=-6$
10. $x=\frac{11}{6}$
11. $f=-\frac{6}{7}$
12. $x=2$
13. $a=-\frac{5}{3}$
14. $x=0$
15. $x=-\frac{8}{5}$
16. $\mathrm{z}=\frac{2}{3}$
17. $y=-\frac{27}{4}$
18. $x=\frac{1}{3}$
19. $u=-\frac{5}{2}$
20. $n=\frac{9}{2}$

Adding and Subtracting Fractions
(GPB page 30)

1. $-\frac{13}{3}$
2. $\frac{17}{2}$
3. $-\frac{33}{5}$
4. $\frac{13}{3}$
5. $-\frac{39}{4}$
6. $\frac{37}{20}$
7. $\frac{19}{12}$
8. $-\frac{93}{8}$
9. $\frac{46}{15}$
10. $-\frac{32}{3}$
11. $-\frac{11}{2}$
12. $-\frac{29}{5}$

Guided Practice Book Answers (cont)

Writing Systems of Equations 2
GPB (page 134)

1. Let $x=\$$ fish
$y=\$$ frog
$3 x+y=12$
$2 y=12$
2. Let $x=\$$ acoustic guitar
$y=\$$ electric guitar
$y=x+781$
$12 x+13 y=72,628$
3. Let $x=\#$ guys
$y=\#$ girls
$x=y+9$
$x+y=21$
4. Let $x=\#$ slushies
$y=\#$ conies
$.75 x+y=12.75$
$x+y=15$
5. Let $x=\$$ DVD
$y=\$$ VHS
$x=2 y$
$x+2 y=23.85$
6. Let $x=\$$ last week
$y=\$$ this week
$y=x+60$
$x+y=340$
7. Let $x=\#$ baseball players
$y=\#$ basketball
players
$x+y=100$
$y=x+20$
8. Let $x=\#$ small
$y=\#$ large
$3 x+6 y=1,803$
$x+y=302$
9. Let $x=\$$ small pack
$y=\$$ large pack
$x+y=1.10$
$2 x+y=1.45$
large pack: $\$.75$
10. Let $x=\#$ T-shirts
$y=\#$ key chains
$x+y=261$
$x=2 y$
key chains: 87
T-shirts: 174

Writing Systems of Equations 3 GPB (page 137)

1. Let $x=\$$ athletic shoes
$y=\$$ casual shoes
$20 x+10 y=750$
$25 x+20 y=1,200$
2. Let $x=\$$ hardback
$y=\$$ paperback
$2 x+6 y=60$
$2 x+3 y=39.75$
3. Let $x=\#$ first size
$y=\#$ second size
$6 x+10 y=1,710$
$x+y=205$
4. Let $x=\$$ spent on CDs
$y=\$$ spent on makeup
$x+y=50$
$x=y+10$
5. Let $x=\$ C D$
$y=\$$ tape
$x=3 y$
$2 x+3 y=47.70$
tape: $\$ 5.30$
CD: \$15.90
6. Let $x=\#$ small
$y=\#$ large
$x+y=210$
$.75 x+1.25 y=232.50$
large: 150
small: 60

Systems of Equations Unit

Review 1 GPB (page 139)

1. check graph
2. $(2,-1)$
3. A
4. A
5. D
6. D
7. B
8. D
9. C
10. A
11. C
12. C
13. B
14. D
15. check graph
16. check graph

Measurement Review
(Systems of Equations Unit)
GPB (page 141)

1. Check answer using mathematics chart.
2. $200.96 \mathrm{~cm}^{2}$
3. $986 \mathrm{~cm}^{3}$
4. A
5. $6,428 \mathrm{in}^{3}$
6. $1,040 \mathrm{in}^{2}{ }^{2}$
7. $209.5 \mathrm{ft}^{2}{ }^{2}$
8. 5 in .
9. $45 \mathrm{in}^{3}$
10. $428 \mathrm{ft}^{2}{ }^{2}$

Systems of Equations Unit
 Review 2 GPB (page 145)

1. check graph
2. $(3,0)$
3. B
4. B
5. A
6. D
7. B
8. D
9. A
10. B
11. A
12. D
13. A
14. C
15. check graph
16. check graph

Semester Review 1
GPB (page 147)

1. II
2. $\{(-5,4),(-3,1),(-3,-2)$,
$(2,2),(4,-5)\}$
3. $\{-5,-3,2,4\}$
4. $\{-5,-2,1,2,4\}$
5. B

Guided Practice Book Answers

Solving for y Part 1
GPB (page 71)

1. $y=-\frac{2}{3} x+\frac{4}{3}$
2. $y=\frac{3}{4} x-\frac{1}{2}$
3. $y=2 x-\frac{1}{2}$
4. $y=\frac{4}{3} x+2$
5. $y=\frac{3}{2} x-\frac{5}{2}$
6. $y=\frac{2}{5} x-\frac{3}{5}$
7. $y=\frac{1}{3} x-\frac{1}{2}$
8. $y=\frac{4}{3} x-\frac{10}{3}$
9. $y=3 x-4$
10. $y=2 x-\frac{8}{3}$
11. $y=2 x+\frac{3}{4}$
12. $y=\frac{7}{5} x-\frac{2}{5}$

Solving for y Part 2
GPB (page 72)

1. $y=\frac{1}{2} x+2$
2. $y=\frac{2}{3} x-\frac{4}{3}$
3. $y=-\frac{4}{5} x+\frac{11}{10}$
4. $y=\frac{3}{2} x+2$
5. $y=\frac{5}{8} x+\frac{3}{2}$
6. $y=\frac{1}{2} x+1$
7. $y=6 x+4$
8. $y=-2 x+\frac{3}{5}$
9. $y=-\frac{4}{3} x-\frac{1}{3}$
10. $y=x+3$
11. $y=\frac{4}{3} x-3$
12. $y=\frac{1}{2} x-\frac{9}{2}$

Functions, Domains, and Ranges GPB (pages 73-74)

1. $\operatorname{Rel}=\{(-3,2),(-1,6),(1,-2)$,
$(3,5)\}$
$D=\{-3,-1,1,3\}$
$R=\{-2,2,5,6\}$
2. $\operatorname{Rel}=\{(3,-2),(6,4),(8,-2)$,
(10, -8) \}
$D=\{3,6,8,10\}$
$R=\{-8,-2,4\}$
3. yes
4. no

5. no	
6. yes	
7.	no
8.	no
9.	no
10. yes	
11. yes	
12. no	
13. no	
14. no	

Graphing Mid-Unit Review
GPB (pages 75-76)

1. III
2. $\{(-5,4),(-3,1),(-3,-2)$,

$$
(2,2),(4,-5)\}
$$

3. $\{-5,-3,2,4\}$
4. $\{-5,-2,1,2,4\}$
5. B
6. B
7. D
8. C
9. B
10. B
11. C
12. C
13. A
14. A
15. C
16. B
17. B
18. D
19. D

20. 1
21. -2
22. -5
23. 1
24. -1
25. -4
26. -6
27. -2
28. 0
29. 2
30. 4
31. 2
32. 2
33. 8
34. -1
35. -1
36. -7
37. -5
38. 2
39. 3
40. 3
41. 8
42. 5
43. 1

Slope 1
GPB (pages 82-83)

1. $A(-2,1) B(2,-3)$ $m=-1$
2. $A(3,4) B(-2,-2)$ $m=\frac{6}{5}$
3. $A(-4,0) B(1,-3)$

Name \qquad

Writing Equations Packet

Directions: Assign the variable and write an equation for each of the following. Do not solve.

1. The first of two numbers is 3 times the second. Their sum is 88 . Find the numbers.
\qquad
2. The length of a rectangular field is 10 meters less than 9 times the width. The perimeter is 140 meters. Find the length.

Let \qquad
\qquad
\qquad = \qquad
Equation: \qquad
3. The larger of two numbers is 10 less than 5 times the smaller. Their sum is 146. Find the smaller number.

Let \qquad $=$ \qquad
Equation: \qquad
4. The perimeter of a rectangle is 482 cm . The length is 6 cm greater than 4 times the width. Find the length.

Let \qquad $=$ \qquad
\qquad
\qquad
Equation: \qquad
5. Together, a football and a basketball cost $\$ 65$. A football costs $\$ 5$ more than $\frac{1}{2}$ of what a basketball costs. How much does a football cost?
\qquad
Equation: \qquad

Writing Equations Packet (cont)

6. The sum of three numbers is 75 . The second number is 5 more than 4 times the first, and the third is 2 times the first. Find the second number. Let \qquad $=$ \qquad
\qquad $=$ \qquad
\qquad
\qquad
Equation: \qquad
7. If 7 less than 4 times a number is 29 , find the number.

Let \qquad $=$ \qquad
Equation: \qquad
8. Juana and Jada made $\$ 58$ babysitting. Juana made $\$ 6$ more than 3 times as much money as Jada made. How much money did Juana make?
\qquad Let $=$ Equation: \qquad
9. José and Isabel went running. José ran 2 miles less than $\frac{1}{2}$ as many miles as Isabel. José ran 6 miles. How many miles did Isabel run?

Let \qquad = \qquad Equation: = \qquad
\qquad
10. Together, a dresser, a nightstand, and a vanity cost $\$ 1,605$. The dresser costs 3 times as much as the nightstand, and the vanity costs $\$ 300$ more than the nightstand. Find the cost of the vanity.

Let \qquad $=$ \qquad
\qquad
\qquad Equation: \qquad
\qquad

Name \qquad

Algebraic Expressions and Operations Test

Directions: Write an algebraic expression for each verbal expression.

1. a number increased by 4
2. \qquad
3. ten times a number
4. three times a number decreased by 8
5. 9 less than 6 times a number
6. twice the difference of 12 and a number
7. the quotient of a number and 3
8. 30 increased by the square of a number 7 .
9. \qquad
\qquad
\qquad

Directions: Evaluate each expression.
8. $4^{3}-25$
9. $14-3(2)$
10. $3(2)^{4}$
11. $7 \cdot 4-3 \cdot 3$
12. $3 \cdot 2+12 \div 3-6$

Algebraic Expressions and Operations Test (cont)

13. $(9+1) \div 2+2$
14. $(7-3)(16 \div 4)-5$
15. $[(9+3)(9-4) \div(9+3-2)]^{2}$
16. $\left[9^{2}-(3+5) 2\right] 3$

Directions: Evaluate the following expression when $x=6$.
17. $\frac{x^{2}-x+6}{x+3}$

Algebraic Expressions and Operations Test

Directions: Evaluate the following expressions when $w=5, n=9, v=6$, and $t=3$.
18. $3 w+(n-v) \dagger$
19. $2 n t-v^{2}$
20. (nw - tiv

Directions: Determine whether each statement represents the additive identity, multiplicative identity, mutiplicative inverse, commutative, or associative property.

$$
\text { 21. }(9+5)+4=9+(5+4) \quad 21 .
$$

\qquad
22. $5+6=6+5$
22. \qquad
23. $3 \cdot 1=3$
23. \qquad
24. $\frac{3}{4} \cdot \frac{4}{3}=1$
24. \qquad
25. $8+0=8$
25. \qquad

Guided Practice Book Answers (oont)

Group Activity 2 (cont.)
47. -7
48. 14
49. -7
50.
51.
5.
52.
5. -11
53. 126
54. -9
55. 28
56. 1
57. -3
58. -26
59. 5
60. -7

Collecting Like Terms

GPB (page 46)

1. $-5 x$
2. $-6 m$
3. $-10 x+4 k$
4. $-9 p$
5. $-8-m$
6. $-12 a-3 p$
7. $-14 x$
8. $-2 a$
9. $-8 x^{2}-2 y$
10. $-8 x+7 y$
11. $-2 m$
12. $-4 x$
13. $-12 p+4 x$
14. 4 k
15. $-4 m n-5 p$
16. $-5 x y+4 x-6 y$
17. $6 m n-9 x$
18. $-2 x$
19. $2 p$
20. $-12 y$

Distributing and Collecting GPB (page 47)	
1.	$7 x+10$
2.	$-5 m+12$
3.	-12k-4
4.	3x-11
5.	$-10 p+5$
6.	$-13 n+35$
7.	$-8 x+27$
8.	-21a-28
9.	$-5 x+4$
10.	10p-24
11.	-5
12.	-29m-1
13.	$-11 x+35$
14.	$-18 p-30$
15.	$2 x-9$
16.	$-13 x-25$
17.	-15k-9
18.	8m-3

Distributing and Collecting
GPB (page 47)
$7 x+10$
$-5 m+12$
-12k-4
$3 x-11$
$-10 p+5$
$-13 n+35$
$-8 x+27$
$21 a-28$
10p
-5
$29 m-1$
$-18 p-30$
$2 x-9$
$-15 k-9$
$8 m-3$

Writing Equations Packet GPB (pages 48-57)

1. Let $x=$ second number
$3 x=$ first number
$3 x+x=88$ OR $4 x=88$
2. Let $x=$ width
$9 x-10=$ length
$2 x+2(9 x-10)=140 O R$
$20 x-20=140$
3. Let $x=$ smaller number
$5 x-10=$ larger number
$5 x-10+x=146$ OR $6 x-10=146$
4. Let $x=$ width
$4 x+6=$ length
$2 x+2(4 x+6)=482 O R$
$10 x+12=482$
5. Let $x=\$$ basketball
$\frac{1}{2} x+5=\$$ football
$\frac{1}{2} x+5+x=65$ OR $\frac{3}{2} x+5=65$
6. Let $x=$ first number
$4 x+5=$ second number
$2 x=$ third number
$x+4 x+5+2 x=75$ OR $7 x+5=75$
7. Let $x=$ the number
$4 x-7=29$
8. Let $x=$ Jada's money
$3 x+6=$ Juana's money
$x+3 x+6=58$ OR $4 x+6=58$
9. Let $x=\#$ miles Isabel
$\frac{1}{2} x-2=\#$ miles José
$\frac{1}{2} x-2=6$
10. Let $x=\$$ nightstand
$3 x=\$$ dresser
$x+300=\$$ vanity
$x+3 x+x+300=1,605$ OR
$5 x+300=1,605$
11. Let $x=$ length of second piece
$4 x-10=$ length of first piece
$x+4 x-10=125$ OR $5 x-10=125$
12. Let $x=\#$ treats yesterday
$2 x=\#$ treats today
$x+2 x=15$ OR $3 x=15$
13. Let $x=\$$ student's ticket
$x+5=\$$ adult's ticket
$2 x+4(x+5)=50$ OR $6 x+20=50$
14. Let $x=$ second number
$x+3=$ first number
$x+x+3=73$ OR $2 x+3=73$
15. Let $x=\$$ jeans
$x+2=\$$ shorts
$x-1=\$$ shir t
$x+2+x+[(2+x)-3]=37 O R$
$3 x+1=37$
16. Let $x=\#$ twirlers $5 x-18=\#$ in drill team $5 x-18=47$
17. Let $x=$ width $x+4=$ length $2 x+2(x+4)=184$ OR $4 x+8=184$
18. Let $x=\$$ triple-pack $\frac{2}{3} x-6=\$$ twin-pack
$\frac{2}{3} x-6=42$
19. Let $x=$ height at birth
$3 x-3=$ height now $3 x-3=240$
20. Let $x=\$$ manual wheelchair $x+600=\$$ electric wheelchair $x+x+600=3,200$ OR $2 x+600=3,200$
21. Let $x=w t$. of Natasha's wheelchair $x+8=w t$. of Jawan's wheelchair $x+x+8=100$ OR $2 x+8=100$
22. Let $x=\#$ balloons Miguel $x+4=\#$ balloons Jing $x+x+4=8$ OR $2 x+4=8$
23. Let $x=\$$ Dulce earned $6 x+4=\$$ Jamal earned $x+6 x+4=53$ OR $7 x+4=53$
24. Let $x=\#$ hrs. Jake $6 x+8=\#$ hrs. Jacinta $(6 x+8)-2=\#$ hrs. Shamika $(6 x+8)-2=30$ OR $6 x+6=30$
25. Let $x=$ cost of $C D$ player $\frac{1}{2} x+10=$ cost of boom box $\frac{1}{2} x+10=60$
26. Let $x=$ number marbles Rasheed has $7 x+6=$ number of marbles Lacey has $x+7 x+6=70$ OR $8 x+6=70$
27. Let $x=$ amount of $\$$ Bo made $7 x-83=$ amount of $\$$ Javier made $x+7 x-83=381$ OR $8 x-83=381$
28. Let $x=$ number of CDs Carla owns $6 x-6=$ number of CDs CeDaniel owns $x+6 x-6=78$ OR $7 x-6=78$
29. Let $x=$ Marco time
$\frac{1}{5} x-2=$ Kwan's time
$\frac{1}{5} x-2=60$
30. Let $x=$ miles Damon ran
$3 x+2=$ miles Ruben ran $x+3 x+2=14$ OR $4 x+2=14$

Guided Practice Book/Assessment Answers

Writing Equations Packet (cont.)
31. Let $x=$ days Jeong Kim attended
$\frac{1}{2} x-9=$ days Heather attended
$x+\frac{1}{2} x-9=183$
$\frac{3}{2} x-9=183$
32. Let $x=$ birds from Tanzania $3 x=$ birds from South Africa $3 x=90$
33. Let $x=$ a number
$x+\frac{3}{4} x=49$ OR $\frac{7}{4} x=49$
34. Let $x=$ number of horses
$2 x+5=$ number of cows
$x+2 x+5=26$ OR $3 x+5=26$
35. Let $x=$ distance Takara ran $\frac{3}{8} x+2=$ distance Janna ran
$\frac{3}{8} x+2=5$
36. Let $x=$ second score
$\frac{1}{2} x=$ first score
$x+\frac{1}{2} x=330$ OR $\frac{3}{2} x=330$
37. Let $x=$ amount Tashika pitched in $x+5=$ amount Diego pitched in $2(x+5)=$ amount Jazmin pitched in $x+x+5+2(x+5)=27$ OR $4 x+15=27$
38. Let $x=$ cost of ring
$3 x=$ cost of bracelet
$x+3 x=200$ OR $4 x=200$
39. Let $x=$ amount Nikki brought
$\frac{2}{3} x=$ amount LaRhonda brought
$\frac{2}{3} x=80$
40. Let $x=$ size of smaller flock
$3 x=$ size of larger flock
$x+3 x=72$ OR $4 x=72$
41. Let $x=$ amount Stephanie earned
$\frac{1}{5} x+10=$ amount Ming Lee earned
$x+\frac{1}{5} x+10=52$ OR $\frac{6}{5} x+10=52$
42. Let $x=$ side 2
$8+x=$ side 1
$2(8+x)=$ side 3
$x+8+x+2(8+x)=44$ OR
$4 x+24=44$
43. Let $x=$ length
$x-7=$ width
$2 x+2(x-7)=42$ OR $4 x-14=42$
44. Let $x=$ miles Tisha walked $2 x-1=$ miles Julio walked $2 x-1+x=17$ OR $3 x-1=17$
45. Let $x=$ amount Erin spent $3 x+3.50=$ amount Josefa spent $3 x+3.50=7.61$
46. Let $x=$ amount Lexy spent
$\frac{1}{2} x+5=$ amount Lupe spent
$3\left(\frac{1}{2} x+5\right)=$ amount Keenan spent
$x+\frac{1}{2} x+5+3\left(\frac{1}{2} x+5\right)=500$ OR
$3 x+20=500$
47. Let $x=$ number of oranges
$x+6=$ number of apples
$x+x+6=20$ OR $2 x+6=20$
48. Let $x=$ amount Amber spent $2 x-4=$ amount Oriana spent $2 x-4=16$

Algebraic Expressions and
Operations Test-Form A
(pages 72-74)
1. $\quad n+4$
2. $10 n$
3. $\quad 3 n-8$
4. $\quad 6 n-9$
5. $\quad 2(12-n$)
6. $\quad n \div 3$
7. $\quad 30+n^{2}$
8. $\quad 39$
9. $\quad 8$
10. 48
11. 19
12. 4
13. 7
14. 11
15. 36
16. 195
17. 4
18. 24
19. 18
20. 252
21. associative property
22. commutative property
23. multiplicative identity property
24. multiplicative inverse property
25. additive identity property

Algebraic Expressions and
Operations Test-Form B
(asess05b.pdf)

1. $n-6$
2. $8 n$
3. $6 n+8$
4. $5 n-4$
5. $2(12+n)$
6. $3 n$
7. $40-n^{2}$
8. 68
9. 12
10. 64
11. 23
12. 11
13. 8
14. 10
15. 81
16. 99
17. $\frac{40}{9}$
18. 24
19. 18
20. 252
21. commutative property
22. associative property
23. multiplicative identity property
24. additive identity property
25. multiplicative inverse property

Adding Integers Quiz-Form A
 (page 75)

1. 4
2. -4
3. -5
4. -1
5. 4
6. -4
7. 1
8. 3
9. -9
10. -7
11. 2
12. -8
13. -7
14. 2
15. 1
16. 7
17. -6
18. -9
19. -4
20. 0
21. 3
22. 4
23. -11
24. 1
25. 3
26. -3
27. -2
28. -8
29. 2
30. -12
31. 4
32. -2
